skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Mallory, Devlin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Finite $$F$$-representation type is an important notion in characteristic-$$p$$commutative algebra, but explicit examples of varieties with or without thisproperty are few. We prove that a large class of homogeneous coordinate ringsin positive characteristic will fail to have finite $$F$$-representation type. Todo so, we prove a connection between differential operators on the homogeneouscoordinate ring of $$X$$ and the existence of global sections of a twist of$$(\mathrm{Sym}^m \Omega_X)^\vee$$. By results of Takagi and Takahashi, thisallows us to rule out FFRT for coordinate rings of varieties with$$(\mathrm{Sym}^m \Omega_X)^\vee$$ not ``positive''. By using results positivityand semistability conditions for the (co)tangent sheaves, we show that severalclasses of varieties fail to have finite $$F$$-representation type, includingabelian varieties, most Calabi--Yau varieties, and complete intersections ofgeneral type. Our work also provides examples of the structure of the ring ofdifferential operators for non-$$F$$-pure varieties, which to this point havelargely been unexplored. 
    more » « less